首页>
知识库>
详情

常用算法设计方法之动态规划法

2020-07-20 来源:CloudBest 阅读量: 0
关键词:

    动态规划法
    经常会遇到复杂问题不能简单地分解成几个子问题,而会分解出一系列的子问题。简单地采用把大问题分解成子问题,并综合子问题的解导出大问题的解的方法,问题求解耗时会按问题规模呈幂级数增加。
    为了节约重复求相同子问题的时间,引入一个数组,不管它们是否对最终解有用,把所有子问题的解存于该数组中,这就是动态规划法所采用的基本方法。以下先用实例说明动态规划方法的使用。
    【问题】 求两字符序列的最长公共字符子序列
    问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列,使得对所有的j=0,1,…,k-1,有xij=yj。例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。
    给定两个序列A和B,称序列Z是A和B的公共子序列,是指Z同是A和B的子序列。问题要求已知两序列A和B的最长公共子序列。
    如采用列举A的所有子序列,并一一检查其是否又是B的子序列,并随时记录所发现的子序列,最终求出最长公共子序列。这种方法因耗时太多而不可取。
    考虑最长公共子序列问题如何分解成子问题,设A=“a0,a1,…,am-1”,B=“b0,b1,…,bm-1”,并Z=“z0,z1,…,zk-1”为它们的最长公共子序列。不难证明有以下性质:
    (1) 如果am-1=bn-1,则zk-1=am-1=bn-1,且“z0,z1,…,zk-2”是“a0,a1,…,am-2”和“b0,b1,…,bn-2”的一个最长公共子序列;
    (2) 如果am-1!=bn-1,则若zk-1!=am-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列;
    (3) 如果am-1!=bn-1,则若zk-1!=bn-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列。
    这样,在找A和B的公共子序列时,如有am-1=bn-1,则进一步解决一个子问题,找“a0,a1,…,am-2”和“b0,b1,…,bm-2”的一个最长公共子序列;如果am-1!=bn-1,则要解决两个子问题,找出“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列和找出“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列,再取两者中较长者作为A和B的最长公共子序列。
    定义c[i][j]为序列“a0,a1,…,ai-2”和“b0,b1,…,bj-1”的最长公共子序列的长度,计算c[i][j]可递归地表述如下:
    (1)c[i][j]=0 如果i=0或j=0;
    (2)c[i][j]= c[i-1][j-1]+1 如果I,j>0,且a[i-1]=b[j-1];
    (3)c[i][j]=max(c[i][j-1],c[i-1][j]) 如果I,j>0,且a[i-1]!=b[j-1]。
    按此算式可写出计算两个序列的最长公共子序列的长度函数。由于c[i][j]的产生仅依赖于c[i-1][j-1]、c[i-1][j]和c[i][j-1],故可以从c[m][n]开始,跟踪c[i][j]的产生过程,逆向构造出最长公共子序列。细节见程序。
    # include
    # include
    # define N 100
    char a[N],b[N],str[N];
    int lcs_len(char *a, char *b, int c[ ][ N])
    { int m=strlen(a), n=strlen(b), i,j;
    for (i=0;i<=m;i++) c[i][0]=0;
    for (i=0;i<=n;i++) c[0][i]=0;
    for (i=1;i<=m;i++)
    for (j=1;j<=m;j++)
    if (a[i-1]==b[j-1])
    c[i][j]=c[i-1][j-1]+1;
    else if (c[i-1][j]>=c[i][j-1])
    c[i][j]=c[i-1][j];
    else
    c[i][j]=c[i][j-1];
    return c[m][n];
    }
    char *buile_lcs(char s[ ],char *a, char *b)
    { int k, i=strlen(a), j=strlen(b);
    k=lcs_len(a,b,c);
    s[k]=’\0’;
    while (k>0)
    if (c[i][j]==c[i-1][j]) i--;
    else if (c[i][j]==c[i][j-1]) j--;
    else { s[--k]=a[i-1];
    i--; j--;
    }
    return s;
    }
    void main()
    { printf (“Enter two string(<%d)!\n”,N);
    scanf(“%s%s”,a,b);
    printf(“LCS=%s\n”,build_lcs(str,a,b));
    }
    1、动态规划的适用条件
    任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适用动态规划的问题必须满足最优化原理和无后效性。
    (1)最优化原理(最优子结构性质)
    最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。